APJ ABDUL KALEAM HECGNOLOZICAL UNIVERSITY

First Semester MCA (2 Year) Degree Examination December 2020

Course Code: 20MCA101

Course Name: MATHEMATICAL FOUNDATIONS FOR COMPUTING

Max. Marks: 60
Duration: 3 Hours
PART A
Answer all questions, each carries 3 marks.
1 Let $A=\{1,2,3,4\}$ and $B=\{p, q, r, s\}$ and if $R=\{(1, p),(1, q)$ $,(1, r),(2, q),(2, r),(2, s)\}$ is a relation from A to B. Write the matrix representation of R.

2 Show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
3 Use Euclidean algorithm to obtain x and y satisfying
$\operatorname{gcd}(752,1000)=752 \mathrm{x}+1000 \mathrm{y}$.
4 Solve the recurrence relation $6 a_{n}-7 a_{n-1}=0 ; n \geq 1, a_{3}=343$.
5 Define planar and non-planar graphs.
6 A connected planar graph has 5 vertices having degrees 4,3,3,2,2. Find the number of edges and faces.
7 Find the Eigen values of the matrix
$\mathrm{A}=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$
8 Show that the vectors $(1,-1,0),(1,3,-1),(5,3,-2)$ are linearly dependent.
9 Define scatter diagram. Describe the various types of correlation using scatter diagram.
10 State the principle of least squares.
PART B
Answer any one question from each module. Each question carries $\mathbf{6}$ marks. Module I
11 Define Equivalence relation. Prove that for $x, y \in Z$ the relation defined by
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) ; 5$ divides $\mathrm{x}-\mathrm{y}\}$ is an equivalence relation.

OR

12
Using Warshall's algorithm to find the transitive closure of the relation

$$
\{(1,2),(2,3),(3,4),(2,1)\} \text { on }\{1,2,3,4\}
$$

Module II

Solve the linear Diophantine equation $24 x+138 y=18$
OR
Solve the recurrence relation $a_{n}=7 a_{n-1}-12 a_{n-2}$, with $a_{0}=3, a_{1}=11$.

Module III

Prove that a connected graph G is a Euler graph if all vertices of G are of even degree.

OR
Prove that for a planar $v-e+r=2$, where $|V|=v ;|E|=e ; r=$ number of regions

Module IV

Find the values of λ and μ for which the system of equations

$$
\begin{align*}
& 2 x+3 y+5 z=9 \tag{6}\\
& 7 x+3 y-2 z=8 \\
& 2 x+3 y+\lambda z=\mu
\end{align*}
$$

has (i)no solution (ii) a unique solution (iii) infinite solution

OR

Find the eigen values and eigen vectors of

$$
\left[\begin{array}{ccc}
3 & -1 & 1 \tag{6}\\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

Module V

Compute the correlation coefficient from the following data.
(6)

x	9	8	7	6	5	4	3	2	1
y	15	16	14	13	11	12	10	8	9

Obtain the two regression equations from the following data:
(6)

x	3	5	6	7	10	11
y	8	12	11	14	16	17

