Reg No .: Mabeena.

enal. Name: TVEROMCA APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester MCA (2 Year) Degree Examination December 2020

Course Code: 20MCA101

Course Name: MATHEMATICAL FOUNDATIONS FOR COMPUTING Max. Marks: 60 Duration: 3 Hours

	PART A Answer all auestions each carries 3 marks.	Marks
1	Let $A = \{1,2,3,4\}$ and $B = \{p, q, r, s\}$ and if $R = \{(1,p),(1,q)\}$	(3)
	(1,r),(2,q),(2,r),(2,s) is a relation from A to B. Write the matrix representation	
	of R.	
2	Show that $(A \cup B)' = A' \cap B'$	(3)
3	Use Euclidean algorithm to obtain x and y satisfying	(3)
	gcd(752,1000) = 752x+1000y.	
4	Solve the recurrence relation $6a_n - 7a_{n-1} = 0$; $n \ge 1$, $a_3 = 343$.	(3)
5	Define planar and non-planar graphs.	(3)
6	A connected planar graph has 5 vertices having degrees 4,3,3,2,2. Find the	(3)
	number of edges and faces.	
7	Find the Eigen values of the matrix	(3)
	$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	
8	Show that the vectors $(1, -1, 0)$, $(1, 3, -1)$, $(5, 3, -2)$ are linearly dependent.	(3)
9	Define scatter diagram. Describe the various types of correlation using scatter	(3)
	diagram.	
10	State the principle of least squares.	(3)
11	PART B Answer any one question from each module. Each question carries 6 marks. Module I Define Equivalence relation. Prove that for $x, y \in Z$ the relation defined by	(6)
-	$R = \{(x, y); 5 \text{ divides } x - y\}$ is an equivalence relation.	

OR

		,								
				0	R					
Solve the recurrence relation $a_n = 7a_{n-1} - 12a_{n-2}$, with $a_0 = 3$, $a_1 = 11$.										
Module III Prove that a connected graph G is a Euler graph if all vertices of G are of even										
degree	•									
OR Prove that for a planar v - e + r = 2, where $ V = v$; $ E = e$; r = number of regions										
Module IV Find the values of λ and μ for which the system of equations										
2x + 3y + 5z = 9										
7x + 3y - 2z = 8										
$2x + 3y + \lambda z = \mu$										
has (i)no solution (ii) a unique solution (iii) infinite solution										
OR										
Find the eigen values and eigen vectors of										
				$\begin{bmatrix} 3 & -1 \\ -1 & 2 \\ 1 & -2 \end{bmatrix}$	-1 1 5 -1 -1 3					
Module V										
Compute the correlation coefficient from the following data.										
х	9	8	7	6	5	4	3	2	1	
У	15	16	14	13	11	12	10	8	9	

0520RLMCA101122006

Module II

Using Warshall's algorithm to find the transitive closure of the relation

 $\{(1,2), (2,3), (3,4), (2,1)\}$ on $\{1,2,3,4\}$

Solve the linear Diophantine equation 24x+138y=18

12

13

14

15

16

17

18

19

Obtain the two regression equations from the following data: 20

х	3	5	6	7	10	11			
У	8	12	11	14	16	17			

OR

(6)

(6)

(6)

(6)

(6)

(6)

(6)

(6)

(6)